Inhibiting aggregation of amyloidogenic proteins as a strategy for treating neurodegeneration

Daniel Segal

School of Molecular Cell Biology & Biotechnology Sagol Interdisciplinary School of Neurosciences Tel Aviv University

> Aufzien Center Conference June 13, 2019

Amyloid deposits are key factors in various neurodegenerative diseases

Alzheimer's disease

Tau

Amyloid β

 α -synuclein

TDP-43

Amyloids of different origins have common characteristics despite no similarity in amino acid sequence

<u>Amyloids:</u>

- Protein filaments (size: nM-µM)
- Composed of aggregated peptide β-sheets.
- Formed by selfassembly of a misfolded protein

Aromatic interactions play a key role in the self assembly of amyloids

Table 1. Typical amyloid fibril formation by remarkably short aromatic peptide fragments^a.

Name of parent peptide	Pathological or physiological condition	Amyloidogenic sequence
Islet amyloid polypeptide	Type II diabetes	NEGAIL
		N <u>F</u> LVH
Amyloid β-peptide	Alzheimer's disease	KLV <u>FF</u> AE
Medin	Aortic medial amyloid	NEGSVQ
Calcitonin	Thyroid carcinoma	DENKE
Gelsolin	Finnish hereditary amyloidosis	SENNGDCCFILD ^b
Serum amyloid A	Chronic inflammation amyloidosis	SFFSFLGEAFD ^b
β2-microglobulin	Dialysis-associated renal amyloidosis	DWSFYLLYTEFT ^b
Designed peptide	None	K <u>FF</u> E

^a Aromatic residues are underlined. ^b The minimal active fragment may be shorter.

Parallel

Displaced

π - π aromatic stacking

T-shaped

Parallel Staggered

Herringbone

Gazit, FASEB J., (2002)

Strategy #1

Prevent self assembly of amyloids

Using small molecules composed of:

- 1) Aromatic core
- 2) Moiety that will confer steric hindrance on interacting amyloid monomers

Example for small molecules: quinones

Why quinones?

- Small aromatic molecules.
- Easy and inexpensive to synthesize.
- Known as inhibitors of various metabolic pathways.
- Natural and synthetic quinones serve as anti-bacterial, anti-viral, and anti-cancer agents.
- Danthron (1,8-dihydroxyanthraquinone) reduces neurotoxicity related to β-amyloid.

Tryptophan-Naphthoquinone hybrids

Trp is the most amyloidogenic-prone amino acid (Pawar et al, JMB 2005)

Both compounds inhibit formation of toxic A β_{1-42} oligomers

Both compounds inhibit $A\beta_{1-42}$ fibril formation

(ThT fluorescence assay)

Compounds indeed bind the aromatic residues in $\mbox{A}\beta$

Scherzer-Attali et al. PloS ONE 2010

e.g. Finelli et al., Mol Cell Neurosci, 2004

Compounds fed to $A\beta_{1-42}$ -expressing Drosophila restore climbing ability

Scherzer-Attali et al. PloS ONE 2010; 2012

Compounds fed to $A\beta_{1-42}$ -expressing Drosophila restore climbing ability

Scherzer-Attali et al. PloS ONE 2010; 2012

*

Compounds reduce $A\beta_{1-42}$ load in fly brain

Compounds readily pass through the BBB (Ex-vivo BBB penetration assay)

Efficacy tests in AD model mice

<u>Acute model</u>: Transgenics carrying 5 familial Alzheimer's disease mutations, under Thy1 promoter (Oakley et al, 2006)

Injected IP, 50mg/kg, every other day From age 2 months - before symptoms start

Assayed at age 6 months, when symptoms are severe

No apparent adverse effects

Compounds improve cognitive functions of AD model mice

Compounds improve cognitive functions of AD model mice

Compounds reduce by ~40% Aβ deposits in brain sections of AD model mice

Congo red staining

πιω

5xFAD mice + vehicle

5xFAD mice + CI-NQTrp

Verified using anti Aβ antibody (6E10)

5xFAD mice + vehicle

5xFAD mice + NQTrp

Both compounds can disassemble pre-formed A β_{1-42} fibrils (ThT fluorescence assay)

Both compounds can disassemble pre-formed A β_{1-42} fibrils (ThT fluorescenceassay)

Generic inhibition of amyloidogenic proteins by two naphthoquinone-tryptophan hybrid molecules

Roni Scherzer-Attali,¹ Ronit Shaltiel-Karyo,¹ Yonatan H. Adalist,¹ Daniel Segal,^{1,2} and Ehud Gazit^{1*}

Compounds inhibit in vitro amyloid aggregation also of:

α-synuclein IAPP (Amylin) Lysozyme Calcitonin Insulin Tau

Strategy #2

Modulate protein misfolding

Using chemical chaperones

Parkinson's disease

α -synuclein

Misfolds and forms amyloid aggregates in dopaminergic neurons

Mannitol

- 6-carbon polyol
- Non-metabolized
- FDA-approved (osmotic diuretic agent)
- Used as BBB disruptor
- Shown to have chemical chaperon activity in vitro (e.g. methallothionein
 β-glucosidase, Hmg2P)

Feeding Mannitol rescues defective locomotion of PD flies

Mannitol: 75mM

A Anti α-syn antibodies

Mannitol reduces a-syn deposits in the brain of PD flies

A Anti α-syn antibodies

в

Treated with Mannitol

Mannitol reduces a-syn deposits in the brain of PD flies

A Anti α -syn antibodies

в

Treated with Mannitol

Mannitol reduces a-syn deposits in the brain of PD mice

Mannitol reduces a-syn levels in brain extracts of PD mice

Mannitol ameliorated additional aspects of neuronal pathology in PD mice

Reduced loss of dopaminergic neurons

Decreased astrogliosis

Increased Tyrosine hydroxylase immuno-reactivity

No such effects on normal littermates treated with Mannitol

specificity

Strategy #3

Conjugate NQTrp and Mannitol

Paul et al., Front. Mol. Biosci. 2019

Conjugates inhibit a-syn aggregation in vitro

Conjugates disassemble pre-formed a-syn fibrils

ThT assay

Conjugates disassemble pre-formed a-syn fibrils

TEM images

Paul et al., Front. Mol. Biosci. 2019

Thanks

Ehud Gazit

Naphthoquinones

Roni Scherzer-Attali Moran Frenkel-Pinter <u>Mannitol</u>

Ronit Shaltiel-Karyo Moran Frenkel-Pinter

Dan Frenkel (TAU, Neurobiol.) Amadeo Caflisch (Univ. Zurich) Eliezer Masliah (UCSD)

Mannitol-NQTrp

Ashim Paul Satabdee Mohapatra

Yan-Mei Li (Univ. Tsinghua)

Israel Ministry of Science; Alliance Family Fund; Kolton Fund